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Abstract 
The discontinuous and highly nonlinear nature of precipitation makes its statistical 
manipulation, like the reduction of bias in quantitative precipitation forecasts (QPF) or 
probabilistic QPF (PQPF) problematic. To ease the statistical post-processing of 
precipitation, a new continuous variable, pseudo-precipitation (PP) is introduced. Pseudo-
precipitation is equal to precipitation when precipitation is nonzero and is proportional to 
the vertically integrated water vapor deficit (with a negative sign) otherwise. The concept 
of PP and its practical application is illustrated with analyzed and forecast data samples. 

Keywords: precipitation, statistical post-processing, calibration, bias correction, dry bias 

1. Introduction 
Precipitation forecasts have become more skillful over recent decades due to improvements 
in Numerical Weather Prediction (NWP) e.g., (Olson et al. 1995; Reynolds 2003.) 
However, due to the fine scale and complex thermodynamic and microphysical processes 
that lead to the formation of precipitation, these improvements have been relatively slower 
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than improvements in other variables such as temperature and pressure (Sanders 1986). 
Compounding the problems posed by its multiscale character, many of the processes 
contributing to the formation of precipitation are also highly non-linear. This results in the 
spatially and temporally highly variable and discontinuous character of precipitation. 
Additional improvements in QPF and PQPF skill are possible by statistically post-
processing ensemble forecasts (e.g., Fritsch and Carbone 2004; Hamill and Whitaker 2006; 
Scheuerer and Hamill 2015). 

The discontinuous nature of precipitation, however, poses special challenges: the statistical 
post-processing of ensemble forecasts; the formulation of tangent linear and adjoint models 
used in data assimilation such as for the Weather Research and Forecast model, (Huang et 
al. 2009); dynamical sensitivity and other applications; and forecast verification. With 
these difficulties in mind, we introduce a new statistically continuous variable called 
pseudo-precipitation (PP) that is related to precipitation. Section 2 offers further motivation 
for the development of this variable, while section 3 provides a formal definition. The 
application of PP is illustrated with observed/analyzed precipitation and ensemble forecast 
data and with a conceptual de-biasing example in section 4. Section 5 outlines a working 
definition for a transform function that ensures the continuity and differentiability of PP 
across and around the zero- precipitation threshold. The paper concludes with a brief 
summary and a discussion of possible future work (section 6). 

2. Motivation 
While forecasts of continuous variables lend themselves to straightforward statistical post-
processing techniques such as model output statistics (MOS, Glahn and Lowry 1972; 
Antolik 1995), PQPF usually involves a two-step process. Given an ensemble of forecasts 
and corresponding precipitation observations, probability of precipitation (POP) forecasts 
are usually calibrated first, followed by the statistical processing of the probability 
distribution of precipitation (PDP), conditioned on precipitation being greater than zero. 
Such a two-step statistical post-processing of precipitation is limited because it does not 
consider a number of moisture-related properties of nonprecipitating members of the 
ensemble (e.g., whether nonprecipitating members are associated with wet or very dry air 
conditions) that likely have discriminating information on the calibration of PDP forecasts. 
Likewise, the amount of precipitation in those members that do precipitate may have 
discriminating power in terms of POP forecast calibration. 
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Conceptually, the calibration of ensemble precipitation forecasts is simpler when the 
forecasts are wet-biased; one needs only to reduce the amount and/or area of precipitation 
coverage in each ensemble member to match ensemble forecast statistics with observed 
climatology. When a statistical post-processing scheme needs to decrease POP in order to 
ensure consistency with observations, precipitation for ensemble member(s) with the 
lowest nonzero precipitation at each grid point can simply be set to zero. The technique of 
Yuan et al. 2007 is an example of how ensemble numerical weather prediction (NWP) 
forecasts can be postprocessed to calibrate PQPF in case of mostly wet forecast bias. 
Correcting dry-biased ensemble members, on the other hand, requires assigning nonzero 
precipitation amounts to ensemble members that had zero precipitation in the raw forecast. 
In this case, the discontinuous nature of precipitation complicates the statistical adjustment 
of ensemble forecasts. Lacking any a priori information on which ensemble members with 
zero precipitation should be assigned nonzero precipitation amounts, a method must be 
devised to identify ensemble members that are closest to producing precipitation. 

In nature, precipitation results from multiscale processes. Moist air may converge as part 
of the larger scale circulation. Under certain conditions, convection may be triggered on 
smaller scales. Through complex and even finer scale microphysical (MP) processes such 
as condensation and deposition, hydrometeors may form, fall, and eventually reach the 
Earth’s surface. MP processes cannot be resolved, even in the finest resolution NWP 
models, and therefore must be parameterized. In coarser resolution models, even 
convective processes (CP) must be parameterized. Depending on the resolution of NWP 
models, precipitation is therefore (i) generated as a prognostic variable in MP 
parameterization schemes (i.e., falling hydrometeors reaching the ground, (Houze 2014)), 
and/or (ii) diagnosed from prognostic variables such as moisture, temperature, and wind as 
part of CP parameterization schemes (Arakawa 2004). 

This study represents an initial attempt at creating a continuous precipitation related 
variable that can also be used to rank nonprecipitating forecast states to facilitate the 
calibration of ensemble forecasts. Instead of working with specific triggers that lead to 
precipitation in either of the two NWP precipitation generation algorithms, we consider 
slower and smoother aspects of precipitation formation that may be better represented in 
NWP forecasts. Moisture is an obvious consideration, expressed as total column-integrated 
water vapor (also known as precipitable water). Precipitable water in itself, however, is not 
sufficient because the same amount of vapor may produce precipitation on a cool day but 
not on a warm day. We are closer to the required attribute by computing the vapor deficit, 
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relative to saturation, in a column-integrated sense. The closer this value is to zero, in cold 
conditions or warm, the more susceptible a grid column is to producing precipitation. 

3. Definition of Pseudo-Precipitation (PP) 
Given the preceding discussion, our goal here is to define a new, continuous variable that 
is equal to precipitation (p) when precipitation is nonzero, and is negative otherwise with 
an increasing absolute value as atmospheric conditions become less amenable to 
precipitation. Thus: 

PP = p when p>0 (1) 
PP = f(J) otherwise, 
where J is a measure of conditions favorable to the creation of precipitation, and f is a 
suitable transform function that ensures the continuity of PP near zero. Further discussion 
on, and a working definition for f appears in section 5. 

Ideally, J should reflect the dynamical and thermodynamical processes and variables 
contributing to the formation of precipitation, including moisture content, temperature 
profile, moisture convergence, and relevant microphysical processes. As a simple but 
suitable candidate, for grid point (i, j) with zero precipitation, J is chosen to be the vertically 
integrated water vapor deficit: 

1 
ò J ( i , j ) = ( q - q ( T )) dp (2) v vsat g 

where qv is water vapor, qvsat is saturated water vapor at temperature T, and g is the 
gravitational constant. This definition for J is based on the most basic ingredient (moisture) 
and process (saturation) needed for the formation of precipitation, effectively measuring 
how far conditions are from saturation. A favorable property of J in this definition of 
pseudo-precipitation is that it has the same physical unit (kg/m2, mass per unit area) as 
precipitation, thus easing the constraints on f that ensure zero-crossing continuity. A more 
complex definition of J may also include moisture convergence and microphysical 
processes, which are important but secondary in the formation of precipitation. 

For very short accumulation periods or for precipitation rate, fluctuations of J in time can 
be neglected and J is uniquely defined. When defining J for finite accumulation periods, 
however, temporal variations in J cannot be ignored. A possible approach in such cases is 
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to base J on the instantaneous atmospheric states during an accumulation period. 
Considering the discontinuous nature of precipitation (i.e., it can fall during short periods 
that are preceded and followed by unsaturated conditions), J could be defined to 
characterize the smallest absolute value of saturation deficit during the period over which 
precipitation is accumulated in a model. This definition may be more consistent with the 
natural processes governing precipitation formation compared to other plausible choices 
such as the mean or other functions of J over the accumulation period. Given the highly 
variable and nonlinear nature of processes leading to precipitation, a distance measure to 
saturation over an accumulation period (i.e., the easiest way to bring the atmosphere close 
to saturation over a period), however, cannot be uniquely defined. We note again that our 
goal is to find a variable that for nonprecipitating events measures how far the atmosphere 
is from precipitating. Considering that output from NWP forecast models from which J is 
calculated is typically available only at the start and end points of selected accumulation 
periods, in this study PP is determined using the average of J values from these two 
instances. 

4. Applications 
Fig. 1 displays the empirical cumulative distribution function (CDF) of observed/analyzed 
pseudo-precipitation over an accumulation period of six hours, within a particular analysis 
grid box, and during a period of 121 days. Observed precipitation analyzed over a 4x4-km 
grid (the National Centers for Environmental Prediction - NCEP Stage IV analysis; 
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/) is aggregated onto a 1x1-degree 
latitude/longitude grid, while corresponding pseudo-precipitation values are calculated 
using the National Center for Atmospheric Research (NCAR)/NCEP Reanalysis data on 
the same 1x1-degree grid. For simplicity, J was determined using operational analysis 
variables with a simple identity matrix of f. 

As expected, the CDF for PP defined with an identity matrix f in Fig. 1 displays a non-
differentiable behavior at and just below zero PP. To avoid discontinuity and to ensure 
differentiability of pseudo-precipitation (particularly at PP=0), f must be chosen carefully. 
In particular, one must consider that (a) J cannot be measured directly and therefore has to 
be derived from other measured or calculated NWP model variables; (b) J has to be 
determined for both NWP analyses and forecasts; (c) different NWP models have unique 
ways of representing natural processes affecting precipitation, especially the initiation of 
precipitation, imparting a model’s potential peculiarities into PP; (d) in nature, precipitation 
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starts before the column of air becomes completely saturated; and (e) precipitation is a 
monotonically increasing function of the length of an accumulation period, whereas J (as 
discussed in the previous section) is a different function of that time period. 

Fig. 1. Empirical cumulative distribution function (CDF) of observed/analyzed pseudo-precipitation for a 6-

hour period for a 1x1-lat/lon grid box centered at 40oN and 121oW for the period December 2005–March 

2006, based on Stage-IV precipitation and NCEP-NCAR saturation deficit reanalysis data. The red dashed 

horizontal line marks the observed/analyzed probability of having no precipitation. 

These factrs contoribute to a narrow range of PP values just below zero over which no PP 
values occur. Another manifestation of discontinuity evident in Fig. 1 is the difference in 
the slope of the curves below and above zero PP. Note that CDF slopes for positive PP are 
also different for different accumulation periods (not shown). These problems can be 
attributed to issues related to differences in the sensitivity of precipitation and J to various 
accumulation periods (issue e mentioned above) and will be considered in section 5. 

In Fig. 2, we compare pseudo-precipitation CDF’s for observed/analyzed and forecast 
conditions for a month-long period in the summer of 2006, at a grid point over Denver, 
CO. The black dotted curve displays the observed/analyzed PP as in Fig. 1. Nonzero 
precipitation is based on NCEP Stage IV precipitation analyses aggregated to a 1x1-
latitude/longitude grid, while the negative PP values are computed at the same resolution, 
using the NCEP Global Forecast System (GFS) analysis data when the Stage IV data are 
equal to zero. The forecast CDF (blue dashed curve) is based on 1x1-degree resolution data 
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from the North American Ensemble Forecast System (NAEFS) (Toth et al. 2006) that 
includes ensemble members from the NCEP (four times per day) and the Canadian 
Meteorological Center (CMC), twice per day. Positive values represent 0–6h precipitation 
accumulation forecasts, while the negative PP values, where zero precipitation were 
forecast, have been computed using raw (uncalibrated) ensemble forecast data. This is 
because the NAEFS ensemble archive does not contain bias-corrected humidity fields. In 
future applications, however, PP will be derived using bias-corrected model variables. 

Fig. 2. Empirical CDF of 6-hr accumulated observed/analyzed (based on NCEP Stage IV precipitation and 

GFS analysis data, black dotted) and 0-6- hour forecast (based on NAEFS ensemble data, blue dashed) 

pseudo-precipitation at a grid point covering Denver, CO, over a 30-day period in the summer of 2006. The 

dashed horizontal line marks the forecast probability of having no precipitation. 

Due to a larger sample that includes all ensemble members, the blue CDF curve based on 
the NAEFS forecasts is much smoother than the black CDF based on observed/analyzed 
PP. The probability of having no precipitation in Fig. 2 is the CDF value where the analyzed 
and forecast curves reach the zero pseudo-precipitation value. For this period, the ensemble 
forecasts tend to underestimate the probability of no precipitation and hence overestimate 
POP relative to observations as the forecast CDF lies below that of the analyzed/observed 
CDF curve around zero PP. NAEFS also underestimates extreme precipitation, with the 
highest forecast values being around 9 mm, compared to 20 mm in the observed/analyzed 

7 



  

           
          
              

   
 

          
              

          
              

         
         

            
       

  
 
 

 
              

            

             

      

 
 

    

          
         

data. Interestingly, the distribution of analyzed and forecast PP is rather similar over their 
negative range. This is because statistically, the distribution of 6-hr forecast and analyzed 
variables that affect PP are rather similar since the analysis is partly derived from a short-
range forecast (Kalnay 2003). 

A hypothetical application of PP for the bias correction of ensemble precipitation forecast 
is illustrated in the schematic of Fig. 3. In this example, only 20% of the raw ensemble 
members produced precipitation (see empirical cumulative histogram in left panel). Based 
on the assessment of systematic errors in similar forecast cases from the past, a calibration 
of the ensemble forecasts in this hypothetical example assigns positive precipitation 
amounts to members with closest to zero PP values. The resulting empirical cumulative 
histogram for the bias-corrected ensemble (right panel in Fig. 3) shows 83% of the 
members with precipitation, which is the expected percentage conditioned on a 20% 
forecast probability. 

Fig. 3. A schematic example of cumulative histograms for raw (left) and bias-corrected (right) ensemble 

pseudo-precipitation forecasts. Dry forecast members closest to saturation from the left are adjusted so the 

calibrated forecasts on the right panel reflect expected precipitation conditioned on the raw forecast 

distribution. For further details, see text. 

5. Choice of Transform Function 
Following Eq. 1, when observed (for the real world) and forecast (for NWP forecasts), 
precipitation is nonzero, and pseudo-precipitation is set equal to that amount. When 
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precipitation is zero, PP is defined as a function of J (see Eq. 2). For consistency and 
comparability with PP for the real world, for PP of NWP forecasts, J will be calculated 
using bias-corrected NWP forecast variables that have the same mean and variance as the 
NWP analysis. 

The typical discontinuous behavior of the CDF for observed/analyzed and forecast PP with 
f as an identity matrix is shown in the schematic of Fig. 4. Rather than attempting to tackle 
various underlying issues related to the use of a simple identity matrix f separately, a new 
f is proposed here as a simple operation that maps the CDF of negative PP so it seamlessly 
blends with the CDF of positive precipitation in a way that ensures the continuity of the 
full CDF. First, a particular accumulation period is chosen for PP (e.g., six hours). Second, 
a parametric distribution is fit over the observed/analyzed precipitation values (green 
curve), assuming that only values greater than zero can be observed and that values below 
zero are unobserved (i.e., censored) but account for a one-POP portion of the full 
distribution (dashed red curve). Third, another parametric distribution is fit over a climatic 
sample of J values with cases of zero precipitation, based on reanalysis data (brown curve). 
f is then defined as a mapping operation that transforms the reanalysis-based J into new 
values that fit onto the negative side of the parametric distribution (dashed red curve) that 
was created by the censored fitting of the observed precipitation values (green curve). This 
transformation is chosen such that the new J values correspond to the same percentile (i.e., 
percentile matching) over the negative range of the observed distribution (dashed red 
curve) as they do on the original distribution of the J values (brown curve). 

Algorithms to fit distributions to a given sample of data as required by this method are 
described by Krzysztofowicz (2016) and tested by Wang et al. (2019). In practice, these 
fits are made for each grid point and day of the year, using a long climate record of 
observationally based precipitation analysis to produce a spatially and seasonally 
dependent definition of f. As long as all forecast variables used to define J for the 
calculation of forecast PP are bias-corrected (i.e., have the same mean values as the 
observed analysis1), f as defined above can be readily used for the calibration of forecast 

1 Note that in an operational environment, analysis and NWP modeling tools are periodically updated and 

therefore are different from those frozen for use in the generation of reanalysis. The updates ensure that 

operational analyses at any time have the highest quality, and therefore are used for bias correction of the 

forecasts, while the reanalysis is used to determine climatological distribution characteristics. Systematic 
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PP. The use of f, as described above. effectively eliminates the problem discussed under 
issue (b) in section 4. 

Fig. 4. Schematic CDF fitted to “censored” observed precipitation values (green curve), with a natural 

extension to the range of negative pseudo-precipitation (PP) values (red dashed), along with a CDF of 

negative PP values reflecting saturation deficit based on NWP analysis data (brown). Transform function f 

corresponds to frequency matching of the brown CDF with the red (“pseudo”) portion of the observed 

precipitation CDF, indicated by the horizontal arrows. For further details, see text. 

6. Summary 
To address difficulties that the discontinuous and nonlinear nature of precipitation poses 
for statistical post-processing and other NWP-related applications, a new, continuous 
variable called pseudo-precipitation (PP) was introduced. According to its definition, PP is 
equal to precipitation when there is precipitation, and is negative with an absolute 
magnitude proportional to the water vapor deficit over the atmospheric column when 

differences between operational and reanalysis values can be continuously monitored and appropriately 

applied to avoid related inconsistencies in calibrated forecasts. 
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precipitation is zero. Continuity of the distribution of negative PP values with that of 
observed/analyzed precipitation is achieved through the application of an empirically 
defined transform function. 

Many statistical post-processing methods sensitive to continuity characteristics can then be 
applied on forecast PP, resulting in calibrated precipitation forecasts. PP thus facilitates a 
one-step post-processing of precipitation. Unlike the conventional approach of first 
calibrating POP and then producing a calibrated CDF conditioned on the presence of 
precipitation, a one-step post-processing approach allows for all (not only the wet or dry) 
members of an ensemble to influence the entire (not only the wet or dry part of the) 
posterior CDF, potentially increasing the statistical resolution of the post-processed 
forecast. In case of a dry bias, ensemble forecasts can also be conveniently calibrated by 
wettening members with the highest negative values of PP (i.e., least dry members). 

The outlined bias correction algorithm has yet to be tested with real forecast and 
observed/analyzed precipitation data. Critical components in the concept of pseudo-
precipitation involve the basic definition (presently using an if statement, see Eq. 1), and 
the working definition of transform function f presented in section 5. Other possible choices 
for Eq. 1 and f are being actively explored and will be reported separately. Future PP 
applications can utilize observed/analyzed datasets such as the climatology-calibrated 
precipitation analysis (Hou et al. 2014; CCPA), in place of Stage IV analyses used in this 
study. New reanalysis and reforecast datasets, as they become available, can also be 
utilized in PP-based calibration studies. 
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